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COMPUTER SIMULATIONS IN RELIABILITY

Jasper Dowling
U. S. Army Munitions Command, Picatinny Arsenal

ABSTRACT. The troublesome problems of calculating a realistic
lower confidence limit for systems reliability from component results and
writing algebraic probability expressions for complex systems have
been investigated. Practical Monte Carlo procedures for routine use of
high speed computers are described. Iterative procedures are explained
which can:

a. . Save time in calculating the lower confidence limits of com-
plex systems. '

b. Obtain point estimates of complex systems from Boolean ex-
pressions when the writing of algebraic equations is too difficult.

INTRODUCTION. This paper deals with two of the problem areas
encountered in obtaining estimates of the reliability of a weapon system
from component test data. The accuracy of the reliability estimate of
a system is a function of the accuracies of the component reliability
estimates. The calculation of the lower bound of the systém estimate,
or lower confidence limit, is one of the problem areas and is the first
of the two discussed. The remainder of this paper explains a computer
simulation technique for evaluating system Boolean expressions where
algebraic probability expressions are not feasible.

CONCLUSION.

1. It is concluded that the Monte Carlo technique is a valid and
practical method of obtaining the lower confidence limit of 2 system."
A 90 70 lower confidence limit of O. 88 obtained with the Monte Carlo
method dorresponds with that obtained by Garner and Vail (Reference 2)
using a three component system in a series configuration with component
reliabilities of O. 96, 0.97, and O.99. Their 95% lower confidence
limit of O. 88 using a different technique corresponded with the lower limit
of O. 88 obtained with the Monte Carlo method.

2. A five component'system of known system reliability was used as
a standard in the second part of this report. The reliability of this known
system was O.98. By using the formula )

P+ 2 pa
- n
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it was determined with 95 % assurance that a Monte Carlo sample size
of 78,400 would be needed to obtain values of 0.98 + .0O005. The system
was run and resultant values of 0.9796 and O. 9799 were obtained. Al-
though this is only an example it is concluded that the application of the
simulation is valid, and hence the procedure is a practical, useful one.

MAIN DISCUSSION .

1. To begin the discussion of the lower confidence limit let us
assume a three component system in a series configuration. See
Figure 1. These components are assumed to be independent. This
system reliability is 0. 96 x 0. 97 x 0.99 = O.92 (to two decimal places).
In this example each success ratio and hence, each binomial probability
distribution is depicted for a sample size of 100. By using the binomial
probability law we can compute a 90 % lower confidence limit for each
of the components, as 0.92, 0.94, and O. 96 respectively. Their pro-

duct 0.92 x 0.94 x 0. 96 = O.83. This is not 2 90 %, confidence limit
of the system.

2. To achieve the desired system distribution a Monte Carlo
technique can be used to perform the product of the three component
distributions. The probability of choosing a particular value from the .
component distribution will have to be equal to the distribution's prob-
ability (ordinate). To obtain this with a uniform random number gener-
ator, the three component binomial distributions are put into cumula-
tive distributions. See Figure 2. A random number x, O < x<lis
generated. If this random number is less than the first value on the
cumulative distribution (lowest ordinate) the value of the abscissa at
this ordinate is assigned to the value of this component. If the random
number is greater than the first ordinate, it is compared to the second
ordinate. This continues until an ordinate is greater than the random
number. The corresponding abscissa is assigned the value of the com- *
ponent. This is done for each of the three components and the three
assigned values are substituted into the system equation and the equation
solved. This is one point of the system distribution. As an example,
assume the three random numbers . 3321645, .21684290, and . 93164200
are chosen. The corresponding reliabilities would be O.95, 0.96, 1.0.
The point on the system distribution would be the product of these three

or O.9120. This procedure is repeated many times to form the system
distribution. ’

All figures are contained in the appendix.
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3. Figure 3 is the system distribution of Figure 1. This distri-
bution is based on 5,000 points (repetitions ) with a mean of 0.92, a
standard deviation of O.026 and a 90 % lower confidence limit of O. 88.
This lower confidence limit can be obtained by assuming normality and
calculating the limit or by counting the lowest 500 points (10 Y, of the
total) of the system frequency distribution .

4. Figure 4 represents a 22 component system. KEach component
is represented by its binomial probability distribution based on a sample
size of 100. It should be noted that although there are a number of
similar components to be assigned the same probability, the algebraic
equation must allow for 22 independent components. Assigning similar
components the same Monte Carlo or simulated value will cause both
higher and lower system values and hence an excessively high variance
and a wider frequency distribution. For accuracy in counting the lowest
cells for determining a counted confidence limit, the system frequency
distribution is collected in small cell intervals and grouped after counting.

5. Figure 5 is the system distribution of Figure 4 based on 5, OO0
points. The mean value of this 22 component system is O. 98 and the
lower 90 070 confidence limit is O.97. It is interesting to point out that
this distribution looses its symmetry as the sample size is decreased.
The left hand tail becomes quite long and tapered. It should also be noted
that although this distribution is essentially binomial, the sample size
of the distribution becomes obscured in the formation of the distribution.

6. The second phase of this paper will be devoted to procedures
for the evaluation of a system where the algebraic probability expression
is not available. While dependency of components is a contributor in
making the algebraic probability expression difficult, a system algebraic
probability expression can become ''not feasible'' even when all com-
ponents maintain their independence. Examples of situations that add to
the complexity of a system probability expression are:

a. Mechanical and electrical couplings

b. One part of a system functions only if a second part of the
system fails

c. Multi~option channels.
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7. Consider Figure 6. Clearly this is not a simple series- parallel

diagram. There are 16 paths of success through this diagram, AlBlchlElFl

etc. To write this as a system of 16 in parallel would require a consider-
able amount of algebra to account for repeating components in more than
one of the 16 success paths. One approach to a solution to this problem is
to redraw the diagram in a simple series-parallel configuration. See
Figure 8. The trouble with this diagram is that there are twenty-four
components represented where actually there are only nineteen physical
components. Thus, the twenty-four components are not independent and
in order to represent the system in a simple series-parallel configur-
ation, it is necessary to draw the same component more than once. This
procedure perhaps lessens the algebra required to write an algebraic
probability expression, however, it would be preferable to consider a
technique that doesn't require indepencence or an algebraic equation.

8. The basic notation and concept of Boolean algebra should be
mentioned at this time. A plus sign is used to mean ''or'', and a dot is
used to mean "'and'’. The following expressions are thus introduced:

1 +0=1 1 -0=0
O+1 =1 O-1=0
0+0=0 0-0=0

9. For purposes of illustration the example used earlier will be
used again. Consider Figure 7. The procedure is as follows: Generate
a random number (RN) from a uniform distribution:

1
O.

If RN < reliability of component A, assign A

If RN > reliability of component A, assign A

Components B and C are treated similarly. Now, the probability ex-
pression in Boolean notation is P = A* B-C which reads P = A and B _
and C. In order for P to be a ''1'"! all three components must be ''1'!,
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The probability of assigning a *'1'' to a component is the success ratio
of the component. Hence, the probability of assigning all three components
a *1*! is the system's probability of success.

10. From Figure 8 the following expressions for different groups of
components (X) can be obtained.

= A - A
’ X, = A - B t4," B,

R X2=C1.(DE+D.E

X, =(C,+C) (F,+E;F)

PROB =X, +(X; - X

11. To solve this final expression a random number is generated

and compared with component one, Al. Al is assigned a '"O!'' or ',

This process continues until all nineteen (not twenty-four) components
have been assigned a "'O'* or ""L'*. IMPORTANT: when Al’ A

2’ Y

> EZ’ and F1 are assigned a value they are assigned the same value every-

where they appear. Upon solving, Xl will be a '1'* or 'O". The prob-
. ability of success of the system can be represented by
' _ n :

P =—i-1— z . PROBi where n is the number of times the system is
i=1
simulated.
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